516 research outputs found

    Swarm-Based Spatial Sorting

    Full text link
    Purpose: To present an algorithm for spatially sorting objects into an annular structure. Design/Methodology/Approach: A swarm-based model that requires only stochastic agent behaviour coupled with a pheromone-inspired "attraction-repulsion" mechanism. Findings: The algorithm consistently generates high-quality annular structures, and is particularly powerful in situations where the initial configuration of objects is similar to those observed in nature. Research limitations/implications: Experimental evidence supports previous theoretical arguments about the nature and mechanism of spatial sorting by insects. Practical implications: The algorithm may find applications in distributed robotics. Originality/value: The model offers a powerful minimal algorithmic framework, and also sheds further light on the nature of attraction-repulsion algorithms and underlying natural processes.Comment: Accepted by the Int. J. Intelligent Computing and Cybernetic

    NanoInfoBio: A case-study in interdisciplinary research

    Full text link
    A significant amount of high-impact contemporary scientific research occurs where biology, computer science, engineering and chemistry converge. Although programmes have been put in place to support such work, the complex dynamics of interdisciplinarity are still poorly understood. In this paper we highlight potential barriers to effective research across disciplines, and suggest, using a case study, possible mechanisms for removing these impediments.Comment: Appears in Kettunen, J., Hyrkkanen, U. & Lehto, A. (Eds.) Applied Research and Professional Education, p.p. 289-309. Turku University of Applied Sciences (2012). http://julkaisut.turkuamk.fi/isbn9789522162519.pdf. arXiv admin note: substantial text overlap with arXiv:1012.417

    A population-based microbial oscillator

    Get PDF
    Genetic oscillators are a major theme of interest in the emerging field of synthetic biology. Until recently, most work has been carried out using intra-cellular oscillators, but this approach restricts the broader applicability of such systems. Motivated by a desire to develop large-scale, spatially-distributed cell-based computational systems, we present an initial design for a population-level oscillator which uses three different bacterial strains. Our system is based on the client-server model familiar to computer science, and uses quorum sensing for communication between nodes. We present the results of extensive in silico simulation tests, which confirm that our design is both feasible and robust.Comment: Submitte

    Fitness Landscape-Based Characterisation of Nature-Inspired Algorithms

    Full text link
    A significant challenge in nature-inspired algorithmics is the identification of specific characteristics of problems that make them harder (or easier) to solve using specific methods. The hope is that, by identifying these characteristics, we may more easily predict which algorithms are best-suited to problems sharing certain features. Here, we approach this problem using fitness landscape analysis. Techniques already exist for measuring the "difficulty" of specific landscapes, but these are often designed solely with evolutionary algorithms in mind, and are generally specific to discrete optimisation. In this paper we develop an approach for comparing a wide range of continuous optimisation algorithms. Using a fitness landscape generation technique, we compare six different nature-inspired algorithms and identify which methods perform best on landscapes exhibiting specific features.Comment: 10 pages, 1 figure, submitted to the 11th International Conference on Adaptive and Natural Computing Algorithm

    Zen Puzzle Garden is NP-complete

    Full text link
    Zen Puzzle Garden (ZPG) is a one-player puzzle game. In this paper, we prove that deciding the solvability of ZPG is NP-complete.Comment: Submitte

    Quantifying the Impact of Parameter Tuning on Nature-Inspired Algorithms

    Full text link
    The problem of parameterization is often central to the effective deployment of nature-inspired algorithms. However, finding the optimal set of parameter values for a combination of problem instance and solution method is highly challenging, and few concrete guidelines exist on how and when such tuning may be performed. Previous work tends to either focus on a specific algorithm or use benchmark problems, and both of these restrictions limit the applicability of any findings. Here, we examine a number of different algorithms, and study them in a "problem agnostic" fashion (i.e., one that is not tied to specific instances) by considering their performance on fitness landscapes with varying characteristics. Using this approach, we make a number of observations on which algorithms may (or may not) benefit from tuning, and in which specific circumstances.Comment: 8 pages, 7 figures. Accepted at the European Conference on Artificial Life (ECAL) 2013, Taormina, Ital
    • …
    corecore